

Power and Precision in Cancer Radiotherapeutics

Marc Hedrick, MD, MBA President & CEO

Forward-Looking Statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statement in this document that is not a historical fact is a "forward-looking statements" within the meaning of Section 27A of the Securities Act and Section 21E of the Securities Exchange Act and are usually identified by the use of words such as "anticipates," "believes," "estimates," "expects," "intends," "projects," "seeks," "should," "will," and variations of such words or similar expressions. We intend these forward-looking statements to be covered by the safe harbor provisions for forward-looking statements contained in Section 27A of the Securities Act and Section 21E of the Securities Exchange Act of 1934, as amended, and are making this statement for purposes of complying with those safe harbor provisions. These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies and prospects as reflected in or suggested by those forward-looking statements are reasonable, we can give no assurance that the plans, intentions, expectations or strategies will be attained or achieved. Furthermore, actual results may differ materially from those described in the forward-looking statements and will be affected by a variety of risks and factors that are beyond our control.

Risks and uncertainties for Plus include, but are not limited to: an inability or delay in obtaining required regulatory approvals for product candidates, which may result in unexpected cost expenditures; risks inherent in drug development in general; uncertainties in obtaining successful clinical results for product candidates and unexpected costs that may result therefrom; failure to realize any value of certain product candidates developed and being developed in light of inherent risks and difficulties involved in successfully bringing product candidates to market; inability to develop new product candidates and support existing products; the approval by the FDA and any other similar foreign regulatory authorities of other competing or superior products brought to market; risks resulting from unforeseen side effects; risk that the market for the combined company's products may not be as large as expected; inability to obtain, maintain and enforce patents and other intellectual property rights or the unexpected costs associated with such enforcement or litigation; inability to obtain and maintain commercial manufacturing arrangements with third-party manufacturers or establish commercial scale manufacturing capabilities; loss of or diminished demand from one or more key customers or distributors; unexpected cost increases and pricing pressures; economic recession and its negative impact on customers, vendors or suppliers; uncertainties of cash flows, expenses and inability to meet working capital needs; and other risks and uncertainties detailed in the risk factors section of Plus' Form 10-K and Forms 10-Q filed with the SEC, as well as other filings Plus makes with the SEC from time-to-time. Many of these factors that will determine actual results are beyond Plus' ability to control or predict. Plus disclaims any obligation to update information contained in these forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

We believe in the critical importance in developing and delivering innovative, targeted radiotherapeutics for patients battling rare and CNS cancers.

Radiopharmaceuticals for Cancer

"Compelling Next-Gen Approach for Solid Tumors"

Biotechnology February 3, 2022

High Alpha & Low Beta: A Primer on Therapeutic Radiopharmaceuticals as a Compelling Next-Gen Approach for Solid Tumors

"Theoretically, any cancer can be cured if **enough radiation** can be **delivered** to it."

Dr. Andrew Brenner
Professor Neuro Oncology & Neurosurgery
Kolitz/Zachry Endowed Chair Neuro-Oncology Research
UT Health San Antonio

"In 2016, there were an estimated 3.05 million cancer survivors treated with radiation, accounting for **29% of all cancer survivors**."

Cancer Epidemiol Biomarkers Prev 2017 Jun;26(6):963-970

Rare and Difficult-to-Treat Cancers

Responsible for Substantial Morbidity and Mortality Worldwide

- + Rare cancers represent 27% of all cancers; all pediatric cancers are rare
- + Rare cancers account for 25% of all cancer deaths; 5-year survival rate is lower for patients with a rare cancer than those with a more common cancer
- + Treatments for rare cancers are eligible for orphan drug designations

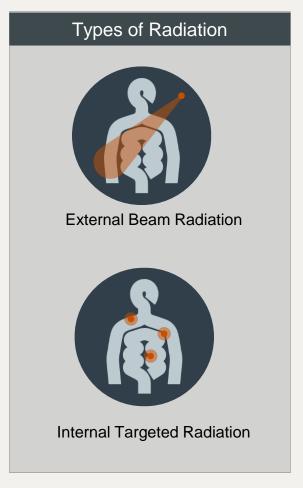
¹⁸⁶RNL FOR CNS TUMORS

Glioblastoma: deadliest, most common brain cancer in adults (TAM \$2.1B)

Leptomeningeal Metastases: late complication in 5% of cancer patients (TAM \$8.4B)

Pediatric Brain Cancer: 2nd most common type of cancer in children (TAM \$106M)

¹⁸⁸BAM FOR LIVER & SOLID TUMORS

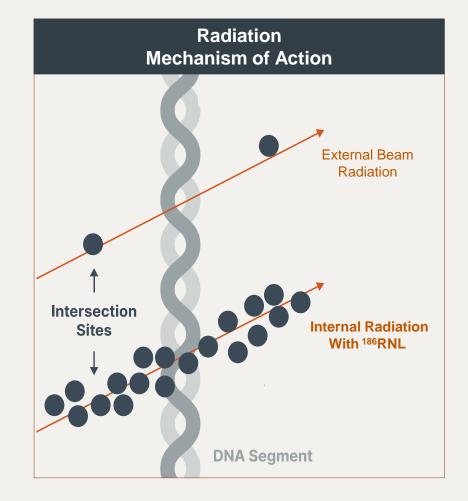


Primary Liver Cancer: 42k cases diagnosed annually in U.S. with 5-year survival of 20%

Secondary Liver Cancer: ~50-60% of colorectal cancer patients develop metastases to liver (TAM \$1.3B)

Targeted Radiation Therapy & Mechanism of Action

Absorbed Radiation & DNA Damage


1 Gray Radiation

10⁵ Ionizations

1000 damaged DNA bases 1000 single strand (SS) breaks 20-40 double strand (DS) breaks

Absorbed Radiation & Recurrent GBM				
DS DNA Breaks				
EBRT (35Gy) 700 - 1,400				
¹⁸⁶ RNL (600 Gy)	12,000 - 24,000			

Lead Investigational Drug: Rhenium-186 NanoLiposome (186RNL)

Proprietary Nanoscale Compound with a Unique Isotope

Rhenium-186

BMEDA

100 nanometers

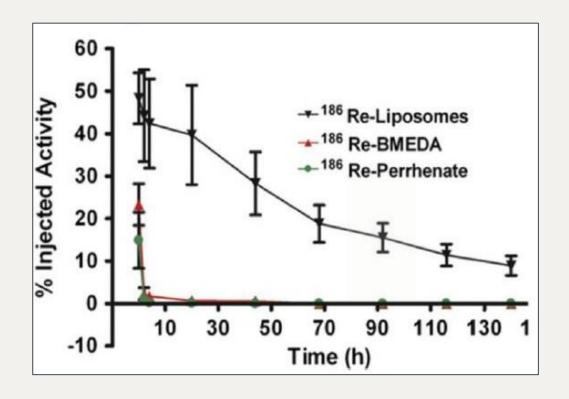
Rhenium-186 Isotope

Dual energy emitter: beta (cytotoxic) & gamma (imaging)

High radiation density: overwhelms innate DNA repair mechanisms

Short average path length (1.8 mm): high precision

Low dose rate: safer for normal tissues

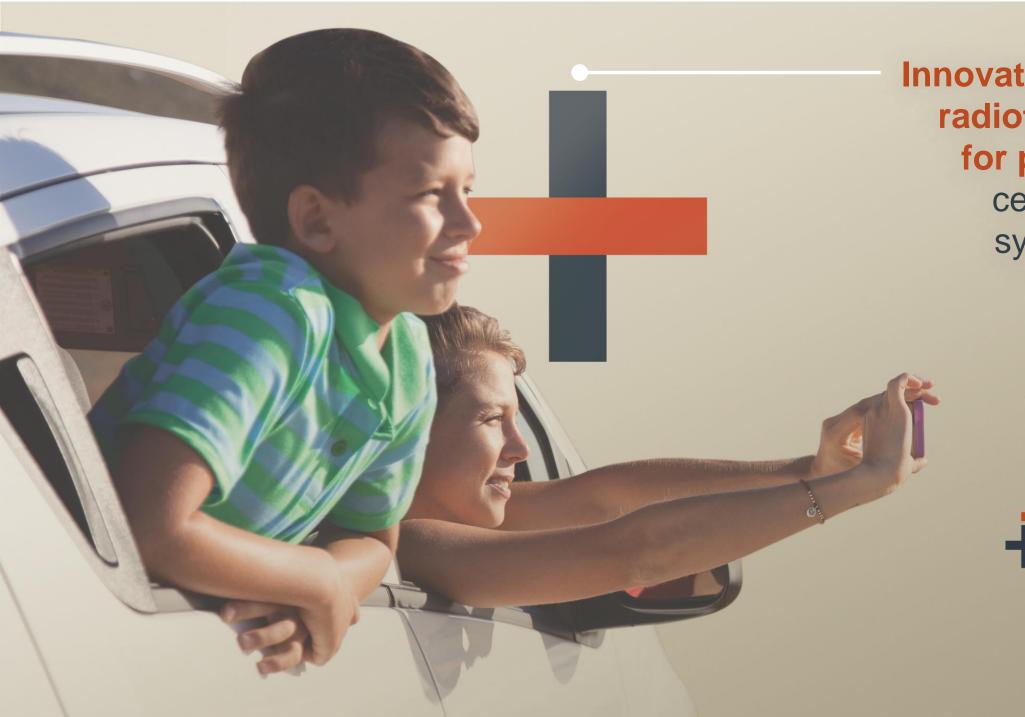

NanoLiposome

Rhenium-186 NanoLiposome

Spatiotemporal Behavior of ¹⁸⁶RNL Following Direct Brain Delivery

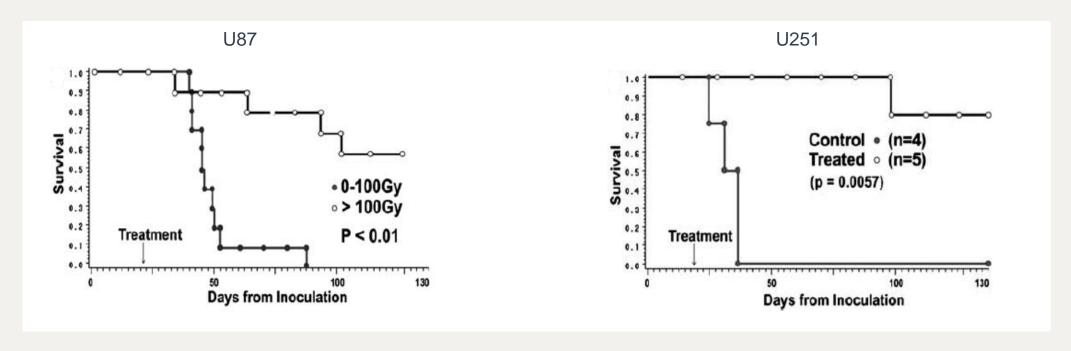
Prolonged Half-Life and Brain Retention

Prolonged Tumor Retention


Liposomal encapsulation significantly extends the in vivo intracranial half-life of Rhenium-186 (90 hours) and decreases clearance rate from the brain.

Plus Therapeutics Pipeline

Investigational Drug	Indication	FDA Designation(s)	External Funding	Stage	Status
	Recurrent Glioblastoma (dose escalation)	Orphan Drug Fast Track	NIH/NCI Phase 2	Phase 1/2a Dose Escalation	Enrolling
	Recurrent Glioblastoma (22.3mCi)	Orphan Drug Fast Track	NIH/NCI Phase 2	Phase 2b/ registration	2022
¹⁸⁶ RNL	Recurrent Glioblastoma- multidose extension trial	Orphan Drug Fast Track		Phase 2b	2022
	Leptomeningeal Metastases	Fast Track		Phase 1	Enrolling
Pediatric Brain Cancer				Pre-IND	IND Submission 2022
¹⁸⁸ RNL-BAM	Hepatocellular Carcinoma		Pre-clinical		IND Enabling CMC & Pre-clinical
KNE-DAW	Liver Metastases	Pre-clinical			IND Enabling CMC & Pre-clinical



Innovative, targeted radiotherapeutics for patients with central nervous system tumors.

¹⁸⁶RNL Preclinical GBM Data

¹⁸⁶RNL Significantly Prolongs Survival in U87 & U251 Intracranial Xenograft Models

- + Doses of up to 1,845 Gy were tolerated without weight loss or neurological deficit.
- + No maximum tolerated dose of RNL reached.
- + Statistically significant prolongation in survival, limited only be the end of the experiment.
- Blinded histologic analysis by neuropathologist showed no residual tumor all treated animals.

Phase 1/2 Clinical Trial Design

Multi-center, sequential cohort, open-label, volume and dose finding study of the safety, tolerability, and distribution of ¹⁸⁶RNL given by convection enhanced delivery to patients with recurrent or progressive malignant glioma after standard surgical, radiation, and/or chemotherapy treatment.

- + Single arm, prospective Phase 1/2 study utilizing a modified Fibonacci dose escalation scheme, followed by an expansion at the designated recommended phase 2 dose (RP2D).
- + Maximum number of planned subjects: up to 55 subjects (including patients enrolled in the Phase 1 dose escalation trial and a subsequent cohort at the RP2D).
- + Supported by a NIH/NCI grant through Phase 2.

Trial Enrollment & Patient Demographics

Patient Demographics (n = 22)

(n = 22)	
Gender	
Male	14 (64%)
Female	8 (36%)
Tumor Volume	Average = 8.3 cc; Range = 0.9 cc - 22.8 cc
Prior Treatments	Average = 1.7 treatments; Range = 1 - 3 treatments
Prior Bevacizumab	N = 5 patients
IDH Mutational Status	
Wild type	18 (90%)
Mutated	2 (10%)
MGMT Status	
Methylated	4 (25%)
Unmethylated	12 (75%)
Glioma grade	
Grade IV	20 (91%)
Grade III	2 (9%)

Dose Escalation Plan

Cohort	Infused Volume (mL)	Total ¹⁸⁶ RNL Activity (mCi)	Concentration (mCi/mL)	Average Absorbed Dose (Gy)	Status
1	0.66	1.0	1.5	198	
2	1.32	2.0	1.5	122	
3	2.64	4.0	1.5	234	
4	5.28	8.0	1.5	171	Enrolling Cohort 8
5	5.28	13.4	2.5	423	(n = 23 subjects)
6	8.80	22.3	2.5	287	(= 20 000)0000)
7*	8.80	22.3	2.5	584	
8	12.3	31.2	2.5	TBD	

Cohort 7 utilized same volume and dose as cohort 6 but with increase in maximum flow rate to 20 microliters/minute

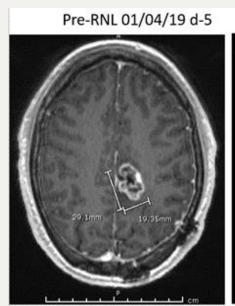
Case Study: Tumor Coverage and Retention

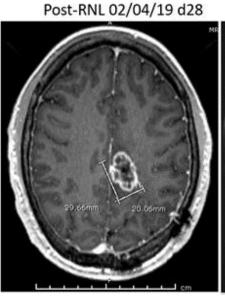
Cohort 5/Subject 01-014: MRI & SPECT/Radiation Dosimetry

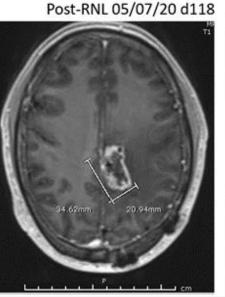
Baseline MRI Scan

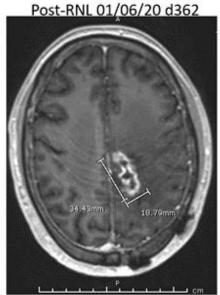
SPECT Scan At 24 Hours

SPECT Scan At Day 5


- + Deep brain tumor recurrence
- + Tumor Volume: 6.5 mL
- + Tumor Coverage: > 90%
- + Absorbed Dose Delivered to Tumor: 419 Gy






Natural History of Recurrent GBM Lesions After RNL™

Cohort 5/Subject 01-014: Tumor Response Observed to Day 362

- MRI scans revealed an initial increase in size which peaked at Day 118, with some associated edema, pseudo-progression
- + tumor shrinkage out to at least Day 362
- + Remains alive at 160 weeks after single treatment

Patient Safety

¹⁸⁶RNL Appears to be Safe and Well Tolerated

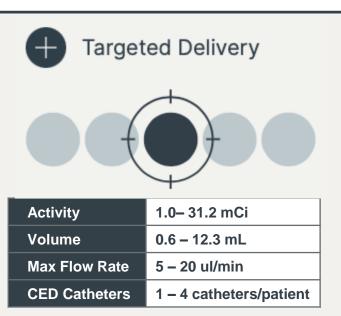
Thus far, in the Phase 1 study of 23 subjects in 8 dosing cohorts with recurrent glioblastoma receiving a single dose of ¹⁸⁶RNL:

- + There have been no dose limiting toxicities.
- + The majority of AEs reported were mild or moderate (Grade 1 or 2) in intensity.
- + Most AEs were considered causally unrelated to RNL™ except scalp discomfort, which was considered related to the surgical procedure.
- + Serious adverse events:

Serious Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Total
Osteonecrosis (Left Shoulder)	0	0	1	0	0	1
Seizure	0	1	2	0	0	3
Vasogenic cerebral edema	0	0	2	0	0	2
Pneumonia	0	0	1	0	0	1

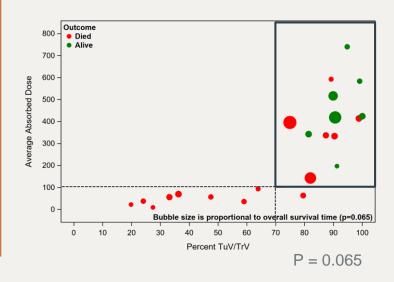
Convection Enhanced Delivery (CED)

A Technique that Generates a Pressure Gradient To Deliver Therapeutics Through the Interstitial Spaces of the Central Nervous System


Evolution of Key Delivery Parameters

Increasing Delivery Success

Absorbed Radiation Dose Correlates with OS

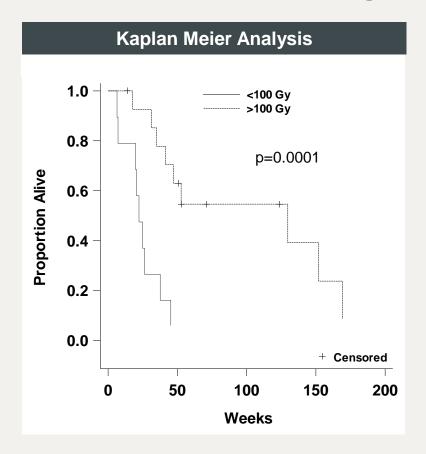

Cohort 1-4 (low dose & volume)

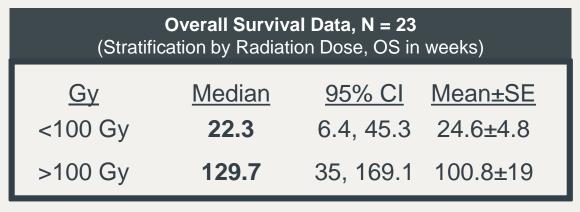
- 12 patients treated
- 5/12 42% > 100Gy

Cohort 5-7 (high dose & volume)

- 11 patients treated
- 9/11 82% > 100Gy

Therapeutic Threshold > 100Gy





ReSPECT-GBM Updated Efficacy Data Since SNO 2021

Current Enrollment is 23 in 7 Dosing Cohorts (Feb 2022)

>100Gy- 4 patients remain alive, none >100Gy

* Best comparative recurrent
GBM published data:
~700 pts. meta analysis of
mono therapy w/ Bevucizamab

Overall Survival = 32.1weeks

Study/Authors	Design	Year Published	N	Median Age (years)	> First Recurrence (%)	Performance Status	Median Survival (weeks)
BELOB Trial Taal et al. ¹¹	Phase II RCT	2014	50	58	0	ECOG (patients) 0 (13); 1(32); 2(5)	34.8
BRAIN Trial Friedman et al. ³	Phase II RCT	2009	85	54	19	KPS (patients) 90-100 (38); 10-80 (47)	40.5
Kreisl et al. 15	Phase II RCT	2009	48	53	N/A	KPS median (range) 90 (60-100)	31.0
Chamberlain et al. 20	Retrospective	2010	50	64	68	KPS median (range) 80 (60-100)	37.0
Field et al. 21	Phase II RCT	2015	62	55	31	KPS (patients) 90-100 (22); 70-80 (28), <70 (10); NA (2)	32.6
Nagane et al. 22	Phase II single-arm	2012	29	57	42	KPS (patients) 90-100 (17); 70-80 (12)	45.7
Chen et al. 23	Retrospective	2015	57	61	0	KPS (patients) 90-100 (13); 70-80 (10); <70 (20); NA (14)	29.4
Duerinck et al. 17	Prospective cohort	2015	313	55	88	ECOG (patients) 0 (30); 1 (204); 2 (57); 3 (12); NA (10)	26.0
Pooled Historical Cohort			694				32.1
VB-111 TThP cohort	Phase II single- arm	NA	24	60	50	KPS median (range) 80 (60-100)	59.1

^{*} Neuro-Oncology, Volume 22, Issue 5, May 2020, Pages 705–717 Neuro-Oncology, Volume 22, Issue 5, May 2020, Pages 694–704 Oncol Lett. 2017 Jul; 14(1): 1141–1146.

ReSPECT-GBM Clinical Trial

Summary & Next Steps

- No DLTs, favorable safety & tolerability profile
- Recent cohorts (5-7) > 80% delivery success
- ~ 20x radiation to tumor vs. EBRT
- Statistically significant improvement in overall survival >100Gy radiation absorbed dose
- Very favorable OS >100Gy vs. published data

Recommended Phase 2 Dose					
Cohort Infused Volume (mL) Total 186RNL Concentration (mCi/mL) Average Absorbed Dose (Gy)					
6	8.80	22.3	2.5	584	

Phase 2b/registrational trial

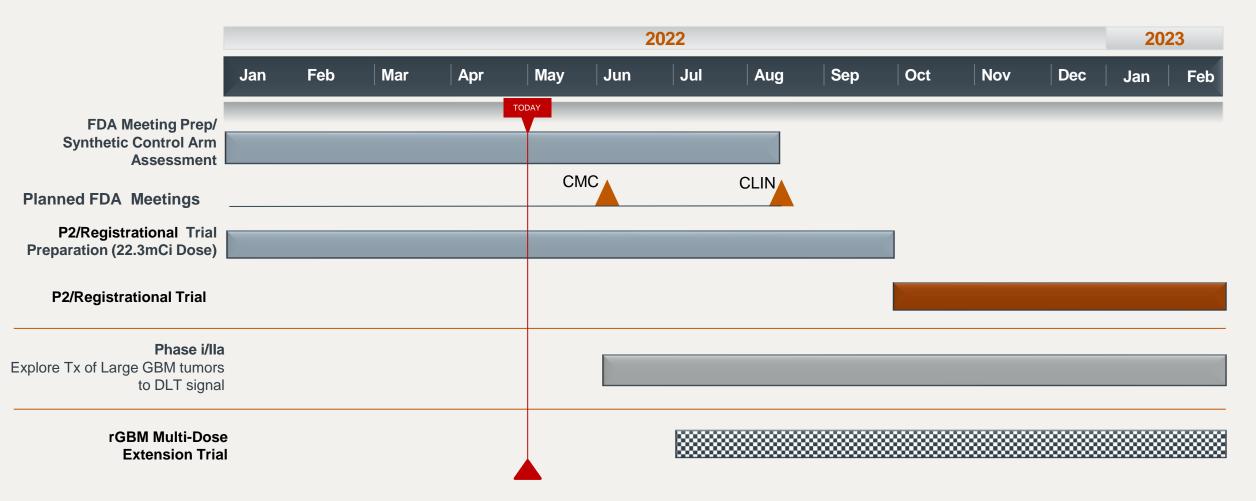
Patients: ~100

Primary Endpoint: Overall survival

Randomization/Control: >1:1, synthetic control arm, MD preference

Timing: Q4 2022 start, enrollment ~18 months

Cost: ~ \$10M


• 3 Part Plan:

- 1. Take cohort 6 dose & volume to Phase 2b/registrational trial in late 2022 for small to medium sized tumors (~2/3 of all rGBM patients)
- 2. Continue to dose escalate in larger tumors to DLT (~1/3 of all GBM doses)
- 3. Initiate multi-dosing extension trial to investigate additional doses of ¹⁸⁶RNL in previously treated rGBM patients

2022 ReSPECT-GBM Clinical Timeline

ReSPECT-LM Trial Protocol- Now Enrolling

Leptomeningeal Metastases

A Two-Part, Multicenter Phase 1 Study to Determine the Maximum Tolerated Dose/ Maximum Feasible Dose, Safety, & Efficacy of Single Dose Rhenium-186 Nanoliposome (186RNL) Administered via the Intraventricular Route for Leptomeningeal Metastasis

Primary Objectives

To characterize the safety & tolerability of a single dose of ¹⁸⁶RNL by the intraventricular route & to identify a maximum tolerated dose (MTD) and/or maximum feasible dose (MFD).

Development collaboration with BioCept for CSF Biomarker Analysis

Secondary Objectives

Characterize the pharmacokinetic & dosimetry profile of a single dose of ¹⁸⁶RNL when administered intraventricularly via Ommaya reservoir.

Develop a multiple dosing strategy of ¹⁸⁶RNL for subsequent clinical trials.

Determine the overall response rate (ORR) defined as the proportion of all evaluable patients achieving a response as the best overall response at the time of progression.

Determine the duration or response (DoR) defined as the time from first response to LM progression.

Determine progression free survival (PFS) defined as the time from first treatment to date of LM progression or death from any cause.

Determine the overall survival (OS) define as the time from first treatment to date of death.

Endpoints

Primary Endpoints

Incidence & severity of adverse events (AE) & serious adverse events (SAE) Incidence of dose limiting toxicities (DLT)

¹⁸⁶RNL in Leptomeningeal Cancer

Disease Background

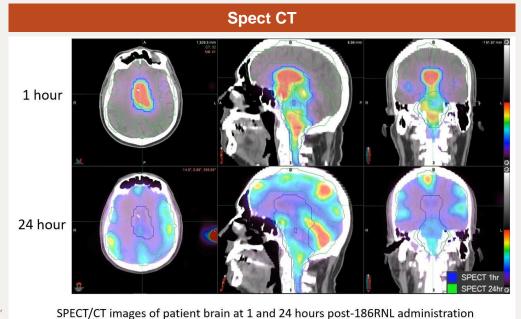
+ Leptomeningeal cancer, also known as carcinomatosis, is a cancer that starts in one part of the body spreads to the leptomeningeal lining of the brain and spinal cord surrounding the cerebrospinal fluid (CSF) space.

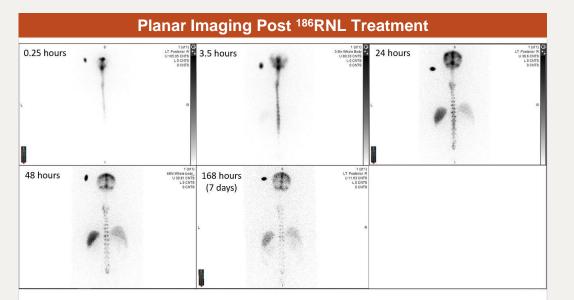
100 nm NanoLiposomes in CSF

- + Circulate feely throughout the CSF.
- + Migrate to meningeal surfaces where LMC is located.
- + Have an extended half life several weeks vs. hours with unencapsulated drugs.
- + Safe & effective in preclinical models

Phase 1 Clinical Trial

- + 2-part dose escalation trial
- + 2 sites enrolling
- + Planned 5 sites
- + 5 cc delivered via Omaya reservoir
- + Feasibility & safety





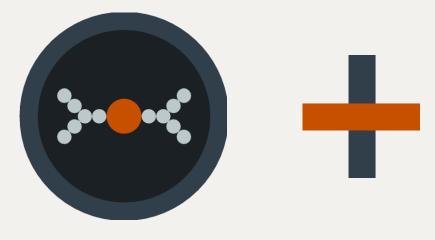
ReSPECT-LM Trial- Initial Patient Report

ReSPECT-LM Phase 1 Clinical Trial Data: Subject 02-101 Post 186RNL Treatment

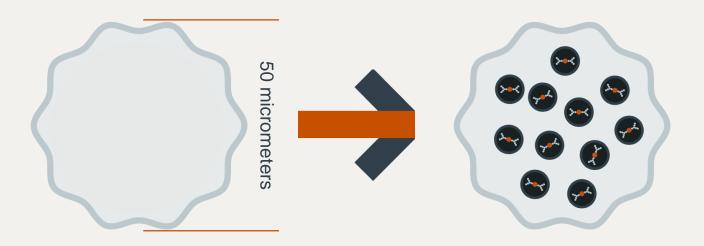
- Rapid and full CSF circulation by 4 hours after treatment
- Well-tolerated & no safety concerns (no DLTs) as of recent study visit
- CSF isotopic activity through at least 7 days after treatment
- Stable 90% reduction in tumor cells at 4 weeks

 Tumor Cells (cells per mL)
 70.77
 39.79
 6.12

CSF Liquid Biopsy Data


Posterior – Anterior Planar Image Summary

Second Investigational Drug: Rhenium-188 NanoLiposome Biodegradable Alginate Microsphere (188RNL-BAM)

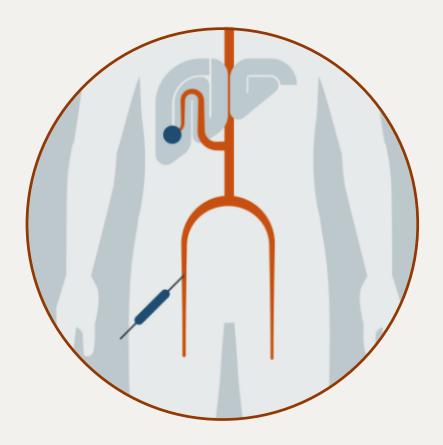

Proprietary Microscale Compound with a Unique Isotope

Rhenium-188

- Dual energy emitter: beta (cytotoxic) & gamma (imaging)
- + Short average path length (3.1 mm): offers greater precision
- + Low dose rate: safer for normal tissues
- + High radiation density: overwhelms innate DNA repair mechanisms
- Generator-produced for quick availability

Biodegradable Alginate Microsphere

Rhenium-188 NanoLiposome Biodegradable Alginate Microsphere



¹⁸⁸RNL-BAM Radioembolization Therapy

In Development as a Non-Surgical Locoregional Treatment Option for Solid Organ Tumors

The **Approach**

A single intra-arterial injection of ¹⁸⁸RNL-BAM in which biodegradable microspheres block the blood flow to the targeted solid organ tumors and simultaneously deliver a therapeutic payload of radiation.

The **Potential Advantages**

Compared to 2 radioembolization therapies currently available, ¹⁸⁸RNL-BAM may offer:

- 1) Biodegradable microspheres
- 2) Higher quality imaging
- 3) Work-up predictive of final clinical outcome
- 4) Shorter production time
- 5) Improved patient access
- 6) Higher margins
- 7) Better translate to other indications

¹⁸⁸RNL-BAM Radioembolization Therapy: Initial Targets

Liver Cancer is the 6th Most Common and 3rd Deadliest Cancer

The **Challenges**

Hepatocellular Carcinoma

The most common type of primary liver cancer.

+ Incidence: 42k

+ 5-Year Survival: 20%

Metastatic Colorectal Cancer

A secondary form of liver cancer with a high level of severity.

+ Incidence: 150K

+ 5-Year Survival: 14%

The **Opportunities**

Pursue new and relevant routes of administration and mechanisms of delivery/action.

Extend the life of patients with liver cancer through a safer, more targeted, and convenient treatment approach.

2022 Corporate Milestones

- Phase 2/ registrational ReSPECT-GBM trial for small to medium sized tumors
 - FDA CMC & Clinical Meetings
 - Complete CMC activities for ¹⁸⁶RNL for GMP/registrational drug supply
 - Initiate ReSPECT-GBM P2/ registrational trial
- ReSPECT-GBM Phase I trial of ¹⁸⁶RNL, dose escalation for large tumors
- Initiate ReSPECT-GBM multidose extension trial
- Complete initial cohort enrollment, feasibility assessment in ReSPECT-LM Phase 1 trial
- Obtain FDA IND approval and initiate ReSPECT-PBC Phase 1 trial of ¹⁸⁶RNL
- Complete technology transfer & key CMC, FDA IND-enabling studies for ¹⁸⁸RNL-BAM asset
- Complete additional preclinical studies
- + 2022 Planned data presentations: SNMMI, SNO Brain Mets, ESMO, EANO, SNO

Capitalization Summary

Select Data

As of March 31, 2021					
Cash	\$21.2M				
Common Shares Outstanding	22,197,635				
Series U warrants	2,141,000				

+ Headquarters: Austin, Texas

+ Manufacturing: San Antonio, Texas

+ Nasdaq: PSTV

+ Corporate Website: PlusTherapeutics.com

+ ReSPECT™ Website: ReSPECT-Trials.com

